martes, 3 de junio de 2014

Distribución exponencial

Distribución exponencial

Mientras que la distribución de Poisson describe las llegadas por unidad de tiempo, la distribución exponencial estudia el tiempo entre cada una de estas llegadas. Si las llegadas son de Poisson el tiempo entre estas llegadas es exponencial. Mientras que la distribución de Poisson es discreta la distribución exponencial es continua porque el tiempo entre llegadas no tiene que ser un número entero. Esta distribución se utiliza mucho para describir el tiempo entre eventos. Más específicamente la variable aleatoria que representa al tiempo necesario para servir a la llegada.
Ejemplos típicos de esta situación son el tiempo que un medico dedica a una exploración, el tiempo de servir una medicina en una farmacia, o el tiempo de atender a una urgencia.
El uso de la distribución exponencial supone que los tiempos de servicio son aleatorios, es decir, que un tiempo de servicio determinado no depende de otro servicio realizado anteriormente ni de la posible cola que pueda estar formándose. Otra característica de este tipo de distribución es que no tienen "edad" o en otras palabras, "memoria". Por ejemplo. Supongamos que el tiempo de atención de un paciente en una sala quirúrgica sigue una distribución exponencial. Si el paciente ya lleva 5 horas siendo operado, la probabilidad de que esté una hora más es la misma que si hubiera estado 2 horas, o 10 horas o las que sea. Esto es debido a que la distribución exponencial supone que los tiempos de servicio tienen una gran variabilidad. A lo mejor el próximo paciente operado tarda 1 hora porque su cirugía era mucho más simple que la anterior.
La función de densidad de la distribución exponencial es la siguiente:
Se dice que la variable aleatoria continua X tiene distribución exponencial con parámetro
Monografias.com
Su gráfica es un modelo apropiado a vida útil de objetos.
Monografias.com
Monografias.com
Par calcular la esperanza matemática y la varianza, se hallara primero el momento de orden r respecto del origen:
Monografias.com


Leer más: http://www.monografias.com/trabajos84/distribucion-exponencial/distribucion-exponencial.shtml#ixzz33dtXEYpk

Distribución normal

Curva de la distribución normal

gráfica
El campo de existencia es cualquier valor real, es decir, (-∞, +∞).
Es simétrica respecto a la media µ.
Tiene un máximo en la media µ.
Crece hasta la media µ y decrece a partir de ella.
En los puntos µ − σ y µ + σ presenta puntos de inflexión.
El eje de abscisas es una asíntota de la curva.
El área del recinto determinado por la función y el eje de abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha.
La probabilidad equivale al área encerrada bajo la curva.
p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 %
p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 %
p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %
Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de p y valores de n cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".
En resumen, la importancia de la distribución normal se debe principalmente a que hay muchas variables asociadas a fenómenos naturales que siguen el modelo de la normal.
  • Caracteres morfológicos de individuos (personas, animales, plantas,…) de una especie, p. ejm. Tallas, pesos, envergaduras, diámetros, perímetros…
  • Caracteres fisiológicos, por ejemplo; efecto de una misma dosis de un fármaco, o de una misma cantidad de abono.
  • Caracteres sociológicos, por ejemplo: consumo de cierto producto por un mismo grupo de individuos, puntuaciones de .
  • Caracteres psicológicos, por ejemplo: cociente intelectual, grado de adaptación a un medio……
  • Errores cometidos al medir ciertas magnitudes.
  • Valores estadísticos maestrales, por ejemplo: la media.
  • Otras distribuciones como la binomial o la de Poisson son aproximaciones normales…
Y en general cualquier característica que se obtenga como suma de muchos factores.

Distribución hipergeometrica

DISTRIBUCIÓN  HIPERGEOMÉTRICA.

Los experimentos que tienen este tipo de distribución tienen las siguientes características:
a)      Al realizar un experimento con este tipo de distribución, se esperan dos tipos de resultados.
b)      Las probabilidades asociadas a cada uno de los resultados no son constantes.
c)      Cada ensayo o repetición del experimento no es independiente de los demás.
d)      El número de repeticiones del experimento (n) es constante.


Ejemplo:
En una urna o recipiente hay un total de N objetos, entre los cuales hay una cantidad de objetos que son defectuosos, si se seleccionan de esta urna n objetos al azar, y sin reemplazo, ¿cuál es la probabilidad de obtener x objetos defectuosos?
 Solución:

Luego;


                                   

donde:
p(x,n) = probabilidad de obtener x objetos defectuosos de entre n seleccionados

muestras de objetos en donde hay x que son defectuosos y n-x buenos

todas las muestras posibles de seleccionar de n objetos tomadas de entre N objetos en total = espacio muestral


Considerando que en la urna hay un total de 10 objetos, 3 de los cuales son defectuosos, si de seleccionan 4 objetos al azar, ¿cuál es la probabilidad de que 2 sean defectuosos?

Solución:

N = 10 objetos en total
a = 3 objetos defectuosos
n = 4 objetos seleccionados en muestra
x = 2 objetos defectuosos deseados en la muestra
       


                 


donde:

                  probabilidad asociada a cada muestra de 4 objetos que se seleccionaron, con lo que se demuestra que las probabilidades no son constantes

                formas o maneras de obtener 2 objetos defectuosos entre los 4 seleccionados = muestras de 4 objetos entre los que 2 son defectuosos


Como se observa en el desarrollo de la solución del problema, la pretensión es demostrar que las probabilidades asociadas a cada uno de los resultados no son constantes.

Luego la probabilidad de obtener 2 objetos defectuosos entre los 4 seleccionados al azar sería:


                                                            


Ejemplos:
  1. Para evitar que lo descubran en la aduana, un viajero ha colocado 6 tabletas  de narcótico en una botella que contiene 9 píldoras de vitamina que son similares en apariencia. Si el oficial de la aduana selecciona 3 tabletas aleatoriamente para analizarlas, a) ¿Cuál es la probabilidad de que el viajero sea arrestado por posesión de narcóticos?, b) ¿Cuál es la probabilidad de que no sea arrestado por posesión de narcóticos?.

Solución:
a) N = 9+6 =15 total de tabletas
a = 6 tabletas de narcótico
n = 3 tabletas seleccionadas
x = 0, 1, 2, o 3 tabletas de narcótico = variable que nos indica el número de tabletas de narcótico que se puede encontrar al seleccionar las 3 tabletas

p(viajero sea arrestado por posesión de narcóticos) = p(de que entre las 3 tabletas seleccionadas haya 1 o más tabletas de narcótico)

                              

                             

otra forma de resolver;

p(el viajero sea arrestado por posesión de narcóticos) = 1 – p(de que entre las tabletas  seleccionadas no haya una sola de narcótico)

                                        

                                       
b)      p(no sea arrestado por posesión de narcóticos)

                  

                                                   


  1. De un lote de 10 proyectiles, 4 se seleccionan al azar y se disparan. Si el lote contiene 3 proyectiles defectuosos que no explotarán, ¿cuál es la probabilidad de que , a) los 4 exploten?, b) al menos 2 no exploten?

Solución:
a) N = 10 proyectiles en total
a = 7 proyectiles que explotan
n = 4 proyectiles seleccionados
x = 0, 1, 2, 3 o 4 proyectiles que explotan = variable que nos define el número de proyectiles que explotan entre la muestra que se dispara

                              

b)  N = 10 proyectiles en total
a = 3 proyectiles que no explotan
n = 4 proyectiles seleccionados
x = 0, 1, 2 o 3 proyectiles que no explotan

p(al menos 2 no exploten) = p( 2 o más proyectiles no exploten) = p(x = 2 o 3; n=4) =

                     


  1. a)¿Cuál es la probabilidad de que una mesera se rehúse a servir bebidas alcohólicas únicamente a dos menores de edad si verifica aleatoriamente solo 5 identificaciones de entre 9 estudiantes, de los cuales 4 no tienen la edad suficiente?, b) ¿Cúal es la probabilidad de que como máximo 2 de las identificaciones pertenezcan a menores de edad?
Solución:

a) N = 9  total de estudiantes
a = 4 estudiantes menores de edad
n = 5 identificaciones seleccionadas
x = variable que nos define el número de identificaciones que pertenecen a personas menores de edad
x = 0, 1, 2,  3 o 4 identificaciones de personas menores de edad

                          

    b) N = 9 total de estudiantes
    a = 4 estudiantes menores de edad
    n = 5 identificaciones seleccionadas
    x = variable que nos define el número de identificaciones que pertenecen a personas menores de edad
    x = 0, 1, 2,  3 o 4 identificaciones de personas menores de edad


                          

                                                       

Esperanza matematica

Esperanza matemática

En estadística la esperanza matemática (también llamada esperanzavalor esperadomedia poblacional o media) de una variable aleatoria  X , es el número \operatorname{E}[X] que formaliza la idea de valor medio de un fenómeno aleatorio.
Cuando la variable aleatoria es discreta, la esperanza es igual a la suma de la probabilidad de cada posible suceso aleatorio multiplicado por el valor de dicho suceso. Por lo tanto, representa la cantidad media que se "espera" como resultado de un experimento aleatorio cuando la probabilidad de cada suceso se mantiene constante y el experimento se repite un elevado número de veces. Cabe decir que el valor que toma la esperanza matemática en algunos casos puede no ser "esperado" en el sentido más general de la palabra - el valor de la esperanza puede ser improbable o incluso imposible.
Por ejemplo, el valor esperado cuando tiramos un dado equilibrado de 6 caras es 3,5. Podemos hacer el cálculo

\begin{align}
\operatorname{E}(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6}
+ 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}\\[6pt] = \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3,5
\end{align}
y cabe destacar que 3,5 no es un valor posible al rodar el dado. En este caso, en el que todos los sucesos son de igual probabilidad, la esperanza es igual a la media aritmética.
Una aplicación común de la esperanza matemática es en las apuestas o los juegos de azar. Por ejemplo, la ruleta americana tiene 38 casillas equiprobables. La ganancia para acertar una apuesta a un solo número paga de 35 a 1 (es decir, cobramos 35 veces lo que hemos apostado y recuperamos la apuesta, así que recibimos 36 veces lo que hemos apostado). Por tanto, considerando los 38 posibles resultados, la esperanza matemática del beneficio para apostar a un solo número es:

\left( -1 \cdot \frac{37}{38} \right) + \left( 35 \cdot \frac{1}{38} \right),
que es -0,0526 aproximadamente. Por lo tanto uno esperaría, en media, perder unos 5 céntimos por cada euro que apuesta, y el valor esperado para apostar 1 euro son 0.9474 euros. En el mundo de las apuestas, un juego donde el beneficio esperado es cero (no ganamos ni perdemos) se llama un "juego justo".
Nota: El primer paréntesis es la "esperanza" de perder tu apuesta de 1€, por eso es negativo el valor. El segundo paréntesis es la esperanza matemática de ganar los 35€. La esperanza matemática del beneficio es el valor esperado a ganar menos el valor esperado a perder.

DISTRIBUCIÓN BINOMIAL

1. En cada prueba del experimento sólo son posibles dos resultadoséxito y fracaso.
2.La probabilidad de éxito es constante, es decir, que no varía de una prueba a otra. Se representa por p.
3.La probabilidad de fracaso también es constante, Se representa por q,
q = 1 − p
3.El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.
5.La variable aleatoria binomialX, expresa el número de éxitos obtenidos en las n pruebas. Por tanto, los valores que puede tomar X son: 0, 1, 2, 3, 4, ..., n.
La distribución bimomial se expresa por B(n, p)

Cálculo de probabilidades en una distribución binomial

binomial
n es el número de pruebas.
k es el número de éxitos.
p es la probabilidad de éxito.
q es la probabilidad de fracaso.
El número combinatorio número combinatorio

Ejemplo

La última novela de un autor ha tenido un gran éxito, hasta el punto de que el 80% de los lectores ya la han leido. Un grupo de 4 amigos son aficionados a la lectura:
1. ¿Cuál es la probabilidad de que el grupo hayan leido la novela 2 personas?
n = 4
p = 0.8
q = 0.2
B(4, 0.8)
binomial
2.¿Y cómo máximo 2?
binomial
binomial

Parámetros de la distribución binomial

Media

media

Varianza

varianza

Desviación típica

desviación típica

Ejemplo

La probabilidad de que un artículo producido por una fabrica sea defectuoso es 0.02. Se envió un cargamento de 10.000 artículos a unos almacenes. Hallar el número esperado de artículos defectuosos, la varianza y la desviación típica.
solución
solución
solución

Variable aleatoria discreta

Definición de variable aleatoria discreta


En la teoría de probabilidades no siempre es indispensable conocer los elementos del espacio muestral, sino tener todos los puntos muestrales representados por cantidades que indiquen cierta propiedad del espacio muestral, de forma que a cada punto muestral le corresponda un valor que lo está representando.

Variable.
A un cirujano le puede interesar el número de operaciones exitosas que realiza; un bioquímico puede estar interesado en la densidad de glóbulos rojos de una persona; un empresario por el monto de las ventas de su empresa durante el año; un educador por el número de alumnos aprobados cuando usa determinado método de enseñanza; un arquitecto por el número de casas que construirá el próximo semestre; un ingeniero agrónomo por la producción de maíz por hectárea con una variedad híbrida que está probando; un futbolista por el número de goles que anotará durante la temporada; un meteorólogo por la precipitación pluvial anual en cierta localidad y así se pueden mencionar múltiples aspectos de interés.
 Como cualquiera de los sucesos anteriores puede tomar valores diferentes, esto es, pueden variar, se les llama variables.

Variable Aleatoria

Si realizamos un experimento aleatorio, es lógico pensar que los resultados que se obtengan también son aleatorios. Así:

Si los valores numéricos que toma una variable provienen de factores fortuitos y si un determinado valor no se puede predecir con precisión, esa variable recibe el nombre de variable aleatoria (v. a.).

Para representar las variables aleatorias se utilizan letras mayúsculas y para los valores de los puntos del espacio muestral se usan minúsculas.


Variable Aleatoria Discreta

 Las variables aleatorias pueden ser discretas y continuas. En el capítulo siguiente trataremos extensamente las variables aleatorias continuas (v. a. c.), pero de momento, con el objeto de visualizar la diferencia entre ellas, podemos decir que las discretas surgen generalmente al contar, mientras que las continuas aparecen cuando se mide.
na variable aleatoria continua teóricamente puede asumir cualquier valor entre dos límites dados, o sea que sus variaciones son infinitesimales, mientras que en las variables aleatorias discretas existen “saltos” o “interrupciones” entre los valores que puede tomar.

De acuerdo a lo anterior podemos decir que:

Una variable aleatoria X es discreta, si solamente puede tomar un conjunto numerable de valores.

Como ejemplos de variables aleatorias discretas podemos mencionar: el número de libros en una biblioteca, el número de habitantes en una población, la cantidad de dinero que una persona trae en su bolsillo, el número de aves en un gallinero, el número de admisiones diarias a un hospital, el número de accidentes automovilísticos en una carretera durante un año, etc.

 Sea X una variable aleatoria asociada con un experimento aleatorio. Si el resultado de un experimento es a, entonces decimos que en esta prueba la variable aleatoria X ha tomado el valor a, o que hemos observado el valor X = a.

 Una variable aleatoria tiene las siguientes propiedades:

1.    La variable aleatoria X es un evento que se define en el espacio muestral S del experimento y sus valores son números reales.

2.          Sea a cualquier número real y sea I cualquier intervalo de S. Entonces el conjunto de todos los valores para los que X = atiene una probabilidad bien definida y lo mismo se cumple para todos los valores de X que están en I.

Ejemplo 4. 1. Sea el experimento de lanzar 3 veces una moneda y representemos por X el evento del número de caras que aparecen. Encontrar los valores que puede tomar la variable aleatoria.

Solución.

El espacio muestral de lanzar 3 veces una moneda es:
S = { ccc, cc+, c+c, +cc, c++, +c+, ++c, +++}

Si solamente nos interesa el número de caras que aparecen, entonces al punto muestral (+++) le corresponde el valor cero porque no hay ninguna cara, a cada punto muestral donde hay una cara (c++, +c+, ++c) le corresponde el valor 1 y así los demás puntos muestrales. Por lo tanto:
X(+++) = 0
(c++) = X(+x+) = X(++c) = 1
X(cc+) =  X(c+c) = X(+cc) = 2
X(ccc) = 3